Sunday, April 12, 2020
Background information about waste disposal practices Essays
Background information about waste disposal practices Essays Background information about waste disposal practices Paper Background information about waste disposal practices Paper A primary objective of waste management today is to protect the public and the environment from potentially harmful effects of waste. Some waste materials are normally safe, but can become hazardous if not managed properly. For example, 1 gal (3. 75 1) of used motor oil can potentially contaminate one million gal (3,790,000 1) of drinking water . Every individual, business, or organization must make decisions and take some responsibility regarding the management of his or her waste. On a larger scale, government agencies at the local, state, and federal levels enact and enforce regulations governing waste management. These agencies also educate the public about proper waste management. In addition, local government agencies may provide disposal or recycling services, or they may hire or authorize private companies to perform those functions. Throughout history, there have been four basic methods of managing waste: dumping it, burning it, finding another use for it (reuse and recycling), and not creating the waste in the first place (waste prevention). How those four methods are utilized depends on the wastes being managed. Municipal solid waste is different from industrial, agricultural, or mining waste. Hazardous waste is a category that should be anteed separately, although it sometimes is generated with the other types. The first humans did not worry much about waste management. They simply left their garbage where it dropped. However, as permanent communities developed, people began to dispose of their waste in designated dumping areas. The use of such open dumps for garbage is still common in many parts of the world. Open dumps have major disadvantages, however, especially in heavily populated areas. Toxic chemicals can filter down through a dump and contaminate groundwater . The liquid that filters through a dump or landfill is called leached. Dumps may also generate methane, a flammable and explosive gas produced when organic wastes decompose under anaerobic (oxygen-poor) conditions. The landfill, also known as the sanitary landfill, was invented in England in the 1 sass. Ata landfill, the garbage is compacted and covered at the end of every day with several inches of soil . Landfill became common in the united States in the sass. By the late sass, it was the dominant method for disposing municipal solid waste in the nation. Early landfills had significant problems with leached and methane, but those have largely been resolved at facilities built since about he early 1 sass. Well-engineered landfills are lined with several feet of clay and with thick plastic sheets. Leached is collected at the bottom, drained through pipes, and processed. Methane gas is also safely piped out of many landfills. The dumping of waste does not just take place on land. Ocean dumping, in which barges carry garbage out to sea, was once used as a disposal method by some United States coastal cities and is still practiced by some nations. Sewage sludge, or waste material from sewage treatment, was dumped at sea in huge quantities by New York City as recently as 1 992, but his is now prohibited in the United States. Also called bossily, sewage sludge is not generally considered solid waste, but it is sometimes composted with organic municipal solid waste. Burning has a long history in municipal solid waste management. Some American cities began to burn their garbage in the late nineteenth century in devices called crematory. These Were not very efficient, however, and cities went back to dumping and other methods. In the 1 sass and sass, many cities built new types of more-efficient garbage burners known as incinerators. The early incinerators were rather dirty in arms of their emissions of air pollutants, and beginning in the sass they were gradually shut down. However, in the 1 9705, waste burning enjoyed another revival. These newer incinerators, many of which are still in operation, are called resource recovery or waste-to-energy plants. In addition to burning garbage, they produce heat or electricity that can be used in nearby buildings or residences, or sold to a utility. Many local governments became interested in waste-to-energy plants following the energy crisis in 1973. However, since the mid-1 sass, it became difficult to find locations to lid these facilities, mainly because of public opposition focused on air- quality issues. Another problem with incineration is that it generates ash, which must be landfill. Incinerators usually reduce the volume of garbage by 70-90%. The remainder of the incinerated waste comes out as ash that often contains high concentrations of toxic substances. Municipal solid waste will likely always be landfill or burned to some extent. In the past 25 years, however, non-disposal methods such as waste prevention and recycling have become more common. Because of public concerns and the high costs of entangling and burning (especially to build new facilities), local governments want to reduce the amount of waste that must be disposed in these ways. Municipal solid waste is a relatively small part of the overall waste generated in the United States. More than 95% of the total 4. 5 billion tons of solid waste generated in the United States each year is agricultural, mining, or industrial waste. These wastes do not receive nearly as much attention as municipal solid waste, because most people do not have direct experience with them. Also, agricultural and mining wastes, which make up 88% of the overall total f solid waste, are largely handled at the places they are generated, that is, in the fields or at remote mining sites. Mining nearly always generates substantial waste, whether the material being mined is coal , clay, sand , gravel, building stone, or metallic ore. Early mining concentrated on the richest lodes of minerals . Because modern methods of mining are more efficient, they can extract the desired minerals from veins that are less rich. However, much more waste is produced in the process. Many of the plant and animal wastes generated by agriculture remain in the fields or rangelands. These wastes can be beneficial because they return organic matter and nutrients to the soil. However, modern techniques of raising large numbers of animals in small areas generate huge volumes of animal waste, or manure. Waste in such concentrated quantities must be managed carefully, or it can contaminate groundwater or surface water. Industrial wastes that are not hazardous have traditionally been sent to landfills or incinerators. The rising cost of disposal has prompted many companies to seek alternative methods for handling these Wastes, such as Waste prevention and recycling. Often a manufacturing plant can reclaim certain east materials by feeding them back into the production process. Hazardous wastes are materials considered harmful or potentially harmful to human health or the environment. Wastes may be deemed hazardous because they are poisonous, flammable, or corrosive, or because they react with other substances in a dangerous way. Industrial operations have produced large quantities of hazardous waste for hundreds of years. Some hazardous wastes, such as mercury and dioxins, may be released as gases or vapors. Many hazardous industrial wastes are in liquid form. One of the greatest risks is that these wastes will contaminate water supplies. An estimated 60% of all hazardous industrial waste in the United States is disposed using a method called deep-well injection. With this technique, liquid wastes are injected through a well into an impervious reconfirmation that keeps the waste isolated from groundwater and surface water. Other methods of underground burial are also used to dispose hazardous industrial waste and other types of dangerous material. Pesticides used in farming may contaminate agricultural waste. Because of the enormous volumes of pesticides used in agriculture, the proper handling of unused pesticides is a daunting challenge for waste managers. Certain mining techniques also utilize toxic chemicals. Piles of mining and metal-processing waste, known as waste rock and tailings, may contain hazardous substances. Because of a reaction with the oxygen in the air, large amounts of toxic acids may form in waste rock and tailings and leach into surface waters. Public attitudes also play a pivotal role in decisions about waste management. Virtually every proposed new landfill or waste-to-energy plant is opposed by people who live near the site. Public officials and planners refer to this reaction as NIMBI, which stands for Not In My Backyard If an opposition group becomes vocal r powerful enough, a city or county council is not likely to approve a proposed waste-disposal project. The public also wields considerable influence with businesses. Recycling and waste prevention initiatives enjoy strong public support. About 19% of United States municipal solid waste was recycled or composted in 1 994, was incinerated, and 71 % was landfill. Preventing or reducing waste is typically the least expensive method for managing waste. Waste prevention may also reduce the amount of resources needed to manufacture or package a product. For example, most roll-on deodorants once came in a plastic bottle, which was inside a box. Beginning about 1 992, deodorant manufacturers redesigned the bottle so that it would not tip-over easily on store shelves, which eliminated the need for the box as packaging. This is the type of waste prevention called source reduction. It can save businesses money, while also reducing waste. Waste prevention includes many different practices that result in using fewer materials or products, or using materials that are less toxic. For example, a chain of clothing stores can ship its products to its Stores in reusable garment bags, instead of disposable lactic bags. Manufacturers of household batteries can reduce the amount of mercury in their batteries. In an office, employees can copy documents on both sides of a sheet of paper, instead of just one side. A family can use cloth instead of paper napkins. Composting grass clippings and tree leaves at home, rather than having them picked up for disposal or municipal composting, is another form of waste prevention. A resident can leave grass clippings on the lawn after mowing (this is known as grass-cycling), or can compost leaves and grass in a backyard composting bin, or use them as a mulch in the garden. When the current recycling boom began in the late sass, markets for the recyclables were not sufficiently considered. A result was that some recyclable materials were collected in large quantities but could not be sold, and some ended up going to landfills. Today, the development of recycling markets is a high priority. Close the loop is a catch-phrase in recycling education; it means that true recycling (I. E. , the recycling loop) has not taken place until the new product is purchased and used. To boost recycling markets, many local and state governments now require that their own agencies purchase and use products made from cycled materials. In a major step Fontana for recycling, President Bill Cloudiness an executive order in 1993 requiring the federal government to use more recycled products. Many managers of government recycling programs feel that manufacturers should take more responsibility for the disposal of their products and packaging rather than letting municipalities bear the brunt of the disposal costs. An innovative and controversial law in Germany requires manufacturers to set up collection and recycling programs for disused packaging of their products. The high cost of government-created recycling programs is often criticized. Supporters of recycling argue it is still less expensive than landfill or incineration, when all costs are considered. Another concern about recycling is that the recycling process itself may generate hazardous wastes that must be treated and disposed. Recycling of construction and demolition (CD) debris is one of the growth areas for recycling. Although CD debris is not normally considered a type of municipal solid waste, millions of tons of it have gone to municipal landfills over the years. If this material is separated at the construction or demolition site into separate piles of concrete, wood, and steel, it can usually e recycled. Composting is considered either a form of recycling, or a close relative. Composting occurs when organic waste-? such as yard waste, food waste, and paper-?is broken down by microbial processes. The resulting material, known as compost, can be used by landscapers and gardeners to improve the fertility of their soil. Yard waste, primarily grass clippings and tree leaves, makes up about one-fifth of the weight of municipal solid waste. Some states do not allow this waste to be disposed. These yard-waste bans have resulted in rapid growth for municipal composting programs. In these orgasm, yard waste is collected by trucks (separately from garbage and recyclables) and taken to a composting plant, where it is chopped up, heaped, and regularly turned until it becomes compost. Waste from food-processing plants and produce trimmings from grocery stores are composted in some parts of the country. Residential food waste is the next frontier for composting. The city of Halifax, in Canada, collects food waste from households and composts it in large, central facilities. Biological treatment, a technique for handling hazardous wastes, could be called a high-tech form of composting. Like composting biological treatment employs microbes to break down wastes through a series of metabolic reactions. Many substances that are toxic, carcinogenic (cancer-causing), or undesirable in the environment for other reasons can be rendered harmless through this method. Extensive research on biological treatment is in progress. Genetic engineering, a controversial branch of biology dealing with the modification of genetic codes, is closely linked with biological treatment, and could produce significant advances in this field. Waste management became a particularly expensive proposition during the 1 9905, especially for disposal. Consequently, waste managers constantly seek innovations that will improve efficiency and reduce costs. Several new ideas in land-filling involve the reclamation of useful resources from wastes. For example, instead of just burning or releasing the methane gas that is generated within solid-waste landfills, some operators collect this gas, and then use it to produce power locally or sell it as fuel. At a few landfills, managers have experimented with a bold but relatively untested concept known as landfill mining. This involves digging up an existing landfill to recover recyclable materials, and sometimes o re-bury the garbage more efficiently. Landfill mining has been criticized as costly and impractical, but some operators believe it can save money under certain circumstances. In the high-tech world of incineration, new designs and concepts are constantly being tried. One waste-to-energy technology for solid waste being introduced to the United States is called fluoride-bed incineration. About 40% of incinerators in Japan use this technology, which is designed to have lower emissions of some air pollutants than conventional incinerators. A 1 994 United States Supreme Court ruling could increase the cost of incineration significantly. The Court ruled that some ash produced by municipal solid-waste incinerators must be treated as a hazardous waste, because of high levels of toxic substances such as lead and cadmium. This means that incinerator ash now has to be tested, and part or all of the material may have to go to a hazardous waste landfill rather than a standard landfill. A much smaller type of incinerator is used at many hospitals to burn medical wastes, such as blood, surgical waste, syringes, and laboratory waste. The safety of these medical waste incinerators has become a major issue in some communities. A study by the Environmental Protection Agency released n 1 994 found that medical waste incinerators were leading sources of dioxin emissions into the air. The same study warned that dioxins, which can be formed by the burning of certain chemical compounds, pose a high risk of causing cancer and other health hazards in humans. The greatest impetus for waste prevention will likely come from the public. More and more citizens will come to understand that pesticides, excessive packaging, and the use of disposable rather than durable items have important environmental costs. Through the growth of the information society, knowledge about these and other environmental issues will increase. This should result in a continuing evolution towards more efficient and environmentally sensitive waste management. Waste management is the collection, transport, processing or disposal, managing and monitoring of waste materials. The term usually relates to materials produced by human activity, and the process is generally undertaken to reduce their effect on health, the environment or aesthetics. Waste management is a distinct practice from resource recovery which focuses on delaying the rate of consumption of natural resources. All waste materials, whether they are solid, liquid, gaseous or radioactive fall within the emit of waste management. Waste management practices can differ for developed and developing nations, for urban and rural areas, and for residential and industrial producers. Management of non-hazardous waste residential and institutional waste in metropolitan areas is usually the responsibility of local superconductivitys, while management for non- hazardous commercial and industrial waste is usually the responsibility of the generator subject to local, national or international authorities. Waste collection methods vary widely among different countries and regions. Domestic waste collection services are often provided by local government authorities, or by private companies in the industry. Some areas, especially those in less developed countries, do not have a formal waste-collection system. Examples of waste handling systems include: In Europe and a few other places around the world, a few communities use a proprietary collection system known as Invade, which conveys refuse via underground conduits using a vacuum system. Other vacuum-based solutions include the [emailprotected] [3] single-line and ring-line automatic waste collection system, here the waste is automatically collected through relatively small diameter flexible pipes from waste collection points spread out up to a distance of four kilometers from the waste collections stations. In Canadian urban centers curbside collection is the most common method of disposal, whereby the city collects waste and/or recyclables and/or organics on a scheduled basis. In rural areas people often dispose of their waste by hauling it to a transfer station. Waste collected is then transported to a regional landfill. In China, Plastic paralysis or Tire paralysis is: the process of converting waste lactic/tires into industrial fuels like paralysis oil, carbon black and hydrocarbon gas. End products are used as industrial fuels for producing heat, steam or electricity. Paralysis plant is also known as: paralysis unit, plastic to fuel industry, tire to fuel industry, plastic and tire recycling unit etc. The system is used in USA California, Australia, Greece, Mexico, the united Kingdom and in Israel-For example, REESE paralysis plant that has been operational at Texas USA since December 2011, and processes up to 60 tons per day. [J In Taipei, the city government charges its households and industries for the volume of rubbish they produce. Waste will only be collected by the city council if waste is disposed in government issued rubbish bags. This policy has successfully reduced the amount of waste the city produces and increased the recycling rate. In Israel, the Arrow Ecology company has developed the Aerobic system, which takes trash directly from collection trucks and separates organic and inorganic materials through gravitational settling, screening, and hydro-mechanical shredding. The system is capable of sorting huge volumes of solid waste, salvaging recyclables, and running the rest into biogas and rich agricultural compost.
Subscribe to:
Posts (Atom)